
Disney Cinema Through the Ages
INFORMATION VISUALIZATION BY CHARLES ANDREWS

Project Overview

The visualization centers on visualizing the key concepts, fan and critic reception, and box
office earnings of the seven eras of Disney movies, which are as follows:

1. Golden Age (1937-1942)
2. Wartime Era (1943-1949)
3. Silver Age (1950-1969)
4. Bronze Age (1970-1988)
5. Disney Renaissance (1989-1999)
6. Revival Era (2010-Present)

This way of organizing the history of Disney was something I learned about after reading a
blog post on the topic. Growing up around Disney’s wide array of content, I have always been
interested in the progression of the films since Walt Disney’s initial animated films. While at
first I intended to focus the visualization on animated works, I decided to expand the scope to
all theatrical films, or high-budget movies made for the big screen. These live action and
sometimes live action-animated hybrid films are just as valuable to the brand and history of
Disney in the eyes of those who grew up watching them.

Gathering the Data

Stumbling across Sameer Patel’s Kaggle dataset (see Figure 1), I now had a reliable list of
Disney film movie titles and release dates ranging from 1937 to August 2021. To ensure the
list was up to date with recent films such as Encanto, I consulted Wikipedia to gather and
input the release dates and film names of projects that were produced between September
2021 and now. With this now complete csv of Disney films, I would be able to use the array of
release dates and film names to collect data concerning the films from APIs.

Once I had the film information, I needed to determine exactly what I wished to communicate
about the topic of historical Disney cinema. After completing a demo about OMBD, a RESTful
API which delivers movie information, I imagined using this dataset to search for each films’
IMBD rating, which comprises fan opinion, and Metacritic rating, which comprises critic
opinion. This would allow me to compare the viewpoints of fans and critics, which is a
relationship that often does not align when it comes to personally nostalgic media like Disney
films.

Through writing a Python script, I was able to request a fan score, critic score, and box office
earning for each movie in my dataset. This process was centered around using a for loop to
iterate through the csv, requesting this data using the parameters of title, referred to as ‘t’ in

https://www.dizavenue.com/2015/08/the-7-eras-of-disney-filmmaking.html
https://www.kaggle.com/datasets/therealsampat/disney-movies-dataset
https://en.wikipedia.org/wiki/List_of_Disney_theatrical_animated_feature_films

the API, and release date year, referred to as ‘y’ in the API. It was important to request the
movie using its release date year as well because Disney has produced many remakes of
earlier films in its history under the same title.

Figure 1 Disney Movies and Films Dataset from Sameer Patel on Kaggle

Upon receiving OMBD’s response for each film, I converted it into a json so I could access the
data point’s fields easily. Then, I used a try, except, else python structure to test if the
response was successful and contained a ‘imbdRating’, ‘Metascore’, and ‘BoxOffice’ field. If
these fields did not exist when I tried to access them in the try clause, the except clause
would note the current index in ‘indiciesToRemove’ so the row could be deleted after the for
loop of requests ended. A placeholder String was placed in the progressively accumulated
arrays of data, which collect the information in the else clause when no error occurs, to
ensure the indexing of these lists matches the indexing of the csv. After the for loop, these
accumulated lists are then added as new columns of data within the pandas data frame that is
used throughout the script. Then, the script enters another for loop to delete the data frame
rows that had unsuccessful responses using the saved list of ‘indiciesToRemove’ as a
reference. Finally, the data frame is saved locally as a csv to be used in the d3.js based
visualization.

Visualization Ideation

Before writing my OMBD python script, I made an initial mockup (see Figure 2) of what I
envisioned for the visualization.

The treemap, seen at the bottom of the mockup, visualizes the distribution of data across the
Disney movie eras to illustrate the brand’s film evolution at a high level. In the final
visualization this treemap was swapped out for a horizontal stacked bar chart to

showcase the fan ratings and critic ratings in an orderly bar format (see Figure 3), rather than
the non-aligned visualization format seen in the treemap’s era partitions. This stacked format
encourages comparing variables by era. Additionally, rather than provide a drop down to
change the variable distribution that is being visualized, I decided to create two separate
stacked bar charts that display average ratings and box office earnings respectively without
the unnecessary distraction of user interaction.

Figure 2 Early Wireframe for Visualization

The top section of the mockup, which allows users to explore the posters and data of top
rated Disney movies in ranked order based on a selected timeframe, was faithfully
reproduced in the final visualization (see Figure 4). However, the final tool is ranked by fan
ratings specifically because that is the only data field that almost all of the successful
responses from OMBD had (except one movie). I also decided to showcase more information
about each movie in its caption: the critic rating, release year, and box office earnings.
Furthermore, the amount of overlapping fan ratings across the films made the mockup’s plan
to label the movies with a specific rank unnecessary. Lastly, I decided to move this section to
the bottom the page so that the ranked movie posters could be added as rows, rather than as
a click through element with arrows on either side, as seen in the mockup. This allows the

user to scroll rather than force them to click the next or previous button repeatedly. This
change also naturally adapted the page for mobile interactions and screen widths.

Lastly, I decided to add an unplanned introduction to the visualization to help introduce the
topic of the seven eras of Disney cinema (see Figure 5). This introduction includes a timeline
with short blurbs about each era’s notable themes, techniques, and public reception.

Figure 3 Final Horizontally Stacked Bar Chart

Figure 4 Final Top Fan Rated Movies Exploration Tool

Figure 5 Disney Era Timeline

Development Process

To begin the development process for the web-based visualization, I sorted the dataset into a
list of the custom class EraSummary. Having the data in chunks by Disney Era allowed me to
easily feed the necessary information into the bar charts and top fan rated movies tool. An
EraSummary holds a calculated averageFanRating, averageCriticRating, and
averageBoxOffice, as well another custom class Era. On construction, an Era conveniently
initializes and holds the start and end year of the Era, the nickname for the era, and an
eraIndexValue to match the Era with its corresponding option in the Era selection dropdown
located in the top fan rated movies tool.

A subsection of the data retrieved from OMBD returned “N/A” for the critic rating and
box office earning fields within the response json. These N/A values were then translated to
the csv that is used for the d3.js. I did not want to delete these movie titles from the list
because they still had a fan rating, which is all that is required for the top fan rated movies
tool’s ranking, and this would mean eliminating a sizeable portion of my movie titles. To work
around these values, I made each N/A equal to 0 at the start of the code, which allowed me
to essentially skip them when calculating the averages for each era. 0 is not a value that is
found in any fan rating, critic rating, or box office earning value, so it worked well as a
placeholder. When I came across these values in formatting the captions for the posters, I

used my ifNaNThenBreakElseSpanFormat() function to determine if the given value is
equal to the 0 placeholder. If it was a placeholder value, then I hid the placeholder text to
show that the value is not available (see Figure 6).

Figure 6 Movies with Placeholder (N/A) Values Hide Text for Missing Information

In creating the bar charts, I wanted to ensure that viewers were able to see the bars on the
screen together to encourage comparison between Disney Eras. To accomplish this I used
my updateChartSize() function to update the svg width and height to be about the
dimensions of the browser window initially and after any window resize event. The function
also reformats the bars and text to fit in the new svg dimensions. To format the text to appear
inside of the bars as a caption, I mapped its font-sizes to the screen height so that the
annotations filled up the height of the bar in an aesthetically appealing manner. I also
positioned the text vertically centered using the yScale bandwidth and horizontally centered
using the xScale and data value associated with the bar. Lastly, I decided to remove the axes
on the graph because they were not super helpful in communicating scale for the bars that
were father away from the axes. Each bar’s value and scale are already adequately
communicated through its internally placed text label.

My final challenge in coding this visualization was retrieving the movie posters for the top fan
rated movies tool from the Movie DB API using JavaScript and jQuery. Initially, as well as
upon selection from the Bootstrap drop down element, the
setMoviePostersAccordingToEra() function retrieves and formats the movie poster for each
movie in the currently selected Era (default Era is Golden Age). This function iterates through
the movies in the csv that fall within the current Era year range, after sorting the data from
highest fan rating to lowest fan rating.

With each iteration, it sends the necessary information to retrieve the poster and format its
caption to the addPoster() function. This function first creates a new div slot for the current
movie title in the #poster-container. Creating this div before requesting the movie poster
was vital to preventing out of order posters due to API lagging, as it provides a set slot for
the poster to be placed when received. Previously, posters were erroneously being
appended to this div in the order they were received, rather than in their ranked order.
Moreover, similar to handling the instance where OMBD did not return a successful
response, I had to check the movie poster response from the Movie DB, which takes the form
of a list of urls, to determine if it had results. In the event that it had no results, this meant that
the API did not have a poster to provide so I hid the movie’s div by setting the display
attribute to none. This also prevented erroring when trying to access a url that does not exist.
The movies that did not have a poster were rather obscure so removing them did not majorly
affect the visualization’s integrity. Otherwise, if the requested poster existed, I added an
image element with the url of the first result and its formatted caption div to its slot. The
parent #poster-container has its CSS Grid’s grid-template-column attribute in the format of
repeat(number-of-columns-desired, equal-positioning-unit) to effortlessly position the
poster divs in consistent row lengths.

Overall, this project allowed me to explore the world of APIs to gather data in the form of
numbers and texts, but also images. I was happy to be able to put together a Disney-inspired
webpage that used its gathered data to illustrate key progressions in Disney cinema. APIs
are a powerful concept, and they are definitely something I hope to explore and learn more
about in the future!

