
Code Critique Final Project- CJ Andrews

1. For my final project, I created a flappy bird clone game in which a player tries to fly their
circle between pipe gaps in order to avoid hitting a pipe and losing. For each pipe they
pass, they gain a point to their score. After the game is over, their score is recorded. If
they decide not to enter a name to the scoreboard their player name is recorded as
“Anonymous Circle”. However, if they enter a name, the score board is updated to use
their given name. I set up the name of the game and the instructions in html.
Additionally, I wrote html code for a restart button and an input text field with a submit
button for entering the player’s name. I then styled these buttons and the text written
with CSS to make the padding more normal and aesthetically pleasing. In order to put
the buttons and fields on the same line, I used divs in the html to group these elements
together. Also, I used CSS to create hover over color change animations for the buttons
(lines 66- 72). From there, I wrote JavaScript to handle what was going on in the game
canvas. First, I set variables that the game would run off of (lines 108-145). I then used
setInterval to run the ticks for my game animation (line 122). For each tick, I run the
main method for my program (lines 125-133). I check in the main if the game is over,
and if it isn’t currently, I check to see if the game has ended with my gameOver function
(line 258). The gameOver function checks to see if there was a collision between the
circle and any of the pipes in the game or if the circle has fallen off screen. If either of
these conditions are true, I add a new entry to the score board with the most recently
entered playerName and update the score board so that it sorts the new score record at
the correct ranking and removes the lowest falling score from the scoreHistory record
list if the list is already full. If the user submits a name using the input field and submit
button, the entered name is added to the most recently added score entry using the
event listener on line 100. If the game was not determined to be over, new pipes are
generated when the newPipeCount reaches 20 via the setInterval ticks. The bird also
falls once birdFallCount has reached a limit. These counters are returned to zero once
they reach the target count. The pipes are also moved left based on the tick. If the user
presses the space bar, the bird flies up as detected by the listener on line 154. When
pipes go off screen to the left, I also remove them so as to not overload the game with
unnecessary pipe data. Lastly, the vector graphics for the game are drawn within the
canvas using D3. The pipes are drawn at their current coordinates with data joins and
the bird is drawn at its current position.

2. These sketches align pretty closely with how my final project turned out. I changed the
font used for the game and also added an instruction to “Enter Player Name” above the
text field and the submit button so that it was clearer what those elements were used
for. Additionally, I improved the graphics for the game by adding tops to the pipes and
shading for where the light is hitting the pipes. These were done by creating. Rectangle
with the same height as the pipe but with less width. Additionally, I added an inner
circle to the circle to highlight that the circle is important to the game and improve the
aesthetics. I also added a faded blue background to the game in order to improve the
overall look.

3. One major issue is that the restart button remains selected once it is pressed and when
the user goes to press the space bar to fly the circle up, if they don’t click on the canvas,
the restart button is pressed again which is confusing without me explaining how to fix
it. Additionally, the graphics for the bird are kind of jumpy and buggy because I have the
circle falling and jumping at large intervals. This takes away from the game but doesn’t
affect game play too much. On the bright side, I think the game is very intuitive to use
besides these issues. The directions are very clearly marked and explain how play the
game in a simplistic manner. Labeling has made the game more accessible to the user.
The game is not overly complicated so there isn’t much to be confused about. I think
that adding the enter player name section was good for game play as it allows the
player to add stakes to the game and try to beat their friends in the game. Additionally, I
like that the game saves the most recently entered player name for the next round so
that they don’t have to reenter their name each time they lose.

4. I constructed my application is a way that was familiar to me because of my experience
with OOD this past semester, I found it more familiar to separate the data updating for
the pipes and birds in my javascript code from drawing the data in my code. This
allowed me to focus on these two aspects with separate code blocks that interact
minimally with each other. This made it simpler for me to debug as well as I could
separate view problems from data model problems. The use of functions in my code
was an important code pattern because I was able to call the functions when I needed
to based on the timing. If statements were very important to my code as I needed to
check for specific conditions in many instances throughout my functions. This is seen
when I used an if statement to check for the two conditions that would result in the
game ending (line 260). I also used for loops and data joins to apply code to the current

list of pipes in the game. This was necessary as the list could vary in length so the for
loops and data joins took into account the length of the list as it changed with time.

5. Focusing on pipe movement, I manipulated the xCoord field in the Pipe data structure to
change by 10 every tick (line 163 and 204). This was a very straightforward way of
changing the pipe xcoord and made the pipes have a very steady moving animation that
looked more realistic than the bird, which didn’t fall with every tick. The use of
setInterval for this data manipulation was very successful. When the pipes xCoord data
was manipulated to the point that a pipe went off screen, the pipe was removed from
the list of pipes in the game (line 242) so as to not make the list of pipes unnecessarily
long. This was a smart move because if this was not done, the game would likely crash
after some time because there would be too many pipes in the game to deal with. I
don’t think this part of the code could be made more efficient as the way I have done
this was the most simplistic way possible in that the pipes move with the timer and
efficient because I remove the pipes when they’re too far off screen.

6. I think it may have been easier to use modulo to deal with the counting for making the
bird fall (line 181). This would have made the counting for when to do certain changes
to the data more simplistic and easier to understand from an outside perspective.
Additionally, I would’nt need to set the birdFallCount back to zero as modulo looks for
the remainder, which would be more elegant and efficient in reducing the number of
lines of code. This is how I would have implemented this change:

a. function fallDown() {
 birdFallCount++;
 if (birdFallCount % 3 == 0) {
 circleHeight = circleHeight + 30;
 }
 }

b. This change reduces the number of lines and is easier to understand if you know
what modulo is and how it functions.

7. Instead of separating the data from the view and just drawing the current location of
the circle and the pipes with d3, I could changed the x position of the pipes using D3 and
y position of the circle using d3. Using transitions would have minimized the amount of
code I would need to do on my end and could have used the built-in shortcuts provided
with D3. Should I have used D3 transitions for the movement, the pipes and circles may
have moved more realistically and with less jumping as you can also have svg shapes
move gradually or speed up to mimic acceleration and make thing more lifelike.
Additionally, I could have used a random number to generate the pipes at a random
coordinate and with a random height instead of having 5 set types of pipes in the game
as I did with makeNewPipe() in my code. This would have introduced more variability to
game play and made the game less predictable.

8. One code pattern that surprised me by how hard it was to work with was Arrays. I was
having many issues with getting the scoreboard to update itself using insertion sort. I
had implemented this in past CS classes but for some reason doing it in javascript was
difficult for me and presented many obstacles. I had to work a lot with indexing for my
while loop on line 282 so that the new score was placed in the correct high score slot

and previously recorded scores were displaced to the correct slot and deleted if the list
was full with the new score added. I learned a lot about mutation as I needed to save
the previous next entry in the high score list so that I could use it when dealing with
what score to put in the following high score slot. Mutation requires complicated
thinking and analysis to make sure it’s working properly.

9. One thing that could be improved is the collision checking as when a circle goes through
the pipe gap if the user presses space it is very easy for the circle to go too high and
have the game ended even if the circle was just barely touching the pipe. If given more
time I would try to make this more lenient and also improve this by lowering the height
gained by pressing space as it seems to be too much. This leads into the other issue with
how high the circle flies up when space is pressed. I had to make this value big so that it
counteracted the amount the circle falls by. The amount the circle falls by had to be big
because I was unable to implement acceleration to mimic gravity as the bird is falling
due to my lack of physics knowledge. As these things were all connected, I tried my best
to get the game to a point where it was playable but also challenging with my current
skill level. If I had acceleration working, I could make the bird fall less fast at first and
grow this falling as time goes on due to acceleration. This would allow me to make the
fly up value to be less high and this improve pipe-circle collision checking.

10. As mentioned in my previous response, I wish I could have implemented acceleration in
terms of how the bird fell to mimic gravity. This would have made the game feel more
realistic and would have brought the game closer to feeling like a real flappy bird clone.
In order to do this, I would have to do a brush up on my physics knowledge or
reimplement the movement of the circles in game with D3, instead of regular JavaScript,
as there is most likely a provided way of making a shape move with acceleration in the
library. Due to time constraints I wasn’t able to do either of these but doing so would
have vastly improved the playability, quality, and realism of the game.

